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AFOSR Interim Technical Report
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January 20, 1984

The following summary is a progress report for the research

currently carried out under AFOSR Contract # AFOSR 81-0020. The

areas covered in this report are 1)mathematical theory of queer OP

differential equations (QDE); 2) universal solutions in multi-

9 dimensional diffusion equations, 3) exact integrals of the Emden- 0

Fowler equation, 4) new results in the theory of turbulent self-

diffusion and 5) mathematical theory of the essential spectrum inty Codes
,Dist Avail and/or

* magnetohydrodynamics. Dist Special

1. The Theory of Queer Differential Equations (QDE's)

Since 1974, the use of QDE's in the theory of adiabatic and

diffusing plasma media has proved very useful. More recently,

strong interest has been placed,.n extending the use of QDE's to

other problems of computationrl fluid interest where there are

multiple time scales such that they can be separated sufficiently

to allow quasi-static evolution of part of the solution. Large

scale meteorological computations are envisioned as candidates

for such an application of QDE techniques. Numerical algorithms

have been developed which accelerate large diffusion codes and the

convergence properties of the numerical schemes depend, to a large

extent, on as yet incomplete understanding of the theory of QDE's.

Recently, research in the mathematical nature of QDE's has been

pursued by H. Grad, P. Laurence and E. Stredulinsky. We present

here a progress report of this work.
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Queer differential equations were introduced by Harold Grad

* to describe a new class of functional differential equations which

model the slow adiabatic diffusion of a plasma through a magnetic

field. The prototype for such an equation is

where ' denotes differentiation with respect to V the volume en-

closed with level sets of i (x). Here we recall * is the increas-

ing rearrangement of a function. It is essentially the inverse

function of the better known distribution function of real analysis,

V(t), where,

V(t) Ix: *(x) <t

( j 'means Lebesgue measure)

Over the past year research hai continued on the model queer

differential equation,

=-M

Equations of this type arise in the work of H. Grad in the theory of

the adiabatic compression of a plasma. [1,21

One approach to this problem is variational (See Proposal, May

'83). We study the problem of minimizing, for bounded 0 C Rn, T(*),

where t'oI
T(*i) = V12d + (1) d

f f
* Ii 0
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for = 0 on SQ, **(O)=O, *u'Inl = 1 (2)

In other words *(x) is zero at its infimum, and one at its supremum.

Results already announced in the last interim report are that T(O)

has a minimizer in a function class that incorporates the boundary

conditions (2).

Several regularity results have been established for this pro-

blem, the most important being that i* is a Lipschitz continuous

function of V and that f V01 is bounded below in terms of an expres-

({j=t}

sion that involves only the measure of the level set {=t} (see [3]).

It rapidly became apparent that in order to obtain initial re-

sults more quickly, at least initially, it would be necessary to

separate questions concerning the structure of the level sets and cri-

tical points of the minimizer 0 from its differentiability7 (of whatever

order). For this reason, an auxiliary variational problem is intro-

duced [31 for convex fl that minimizes T(*) among functions where

level sets are convex. There is strong evidence that a minimizer to

this auxiliary problem provides a solution to the queer differential

equation 1), even though the admissibility class of trial functions

has been narrowed. All details regarding this are not complete as of

this writing although many are contained in [4]. In any case this is

why aside from, we think, being interesting in their own right, esti-

mates for the auxiliary problem will carry over to the original problem.II' For the auxiliary problem we have introduced an approximate prob-
"" th

lem by modeling the ODE term through a finite difference. The

5.'.

.1'-
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approximation gives rise to a free boundary problem with n free

boundaries which is a topic that is in and of itself on the fron-

tiers of work in free boundaries (e.g., in the work of Luis

Caffarelli and Avner Friedman). It can be shown that the approxi-

mate problem is harmonic in the regions contained between the free

boundaries and that certain jump conditions on the gradient of the

function are satisfied across the free boundaries. A combination of

the use of these jump conditions with novel results on V(t) for

harmonic functions permits one to conclude that the solution to our

approximate QDE problem is superharmonic, which we feel is itself

a significant achievement. Moreover, as the property of being super-

harmonic is preserved under weak H1 limits as n + -, it is expected

that the superharmonicity result will carry over to the full auxiliary

problem and thus via the remarks above to the full QDE.

As we have exhibited a strong'interplay between understanding

certain free boundary problems for harmonic functions and.queer

differential equations, an interaction between us and L. Caffarelli

and A. Friedman has been sparked which has already led to a few

new theorems which will also be contained in [4]. Furthermore,

current work of theirs [5] for the case where 9 is not convex pro-

vides a significant boost to the idea of attempting a similar approxi-

mation procedure by an n-shell free boundary problem in the nonconvex

case. Queer differential equations give rise to many new and in-

teresting questions about free boundary problems, thus we think they

are a source for challenging problems for years to come in this area.
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It was claimed by Harold Grad long ago that "plasma physics

continually gives rise to new and interesting mathematical struc-

tures." The relationship we have sketched between queer differen-

tial equations and free boundary problems provides another example

of the truth of Grad's conjecture.
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2. Universal Solutions in Multidimensional Diffusion Equations

This work is presently being carried out by P. Rosenau and

represents a natural extension of his work in non-linear thermal

and diffusive waves described in the Interim Report of January 31,

1983. Further, this work represents a major advance in the mathe-

matical structure of coupled diffusion equations.

As a model for such a system of equations we consider the

transport of mass and energy through coupled transport equations.

The interaction between mass and heat diffusion (transport) co-

efficients is a source of many new effects described by the follow-

ing prototype system of equations:

t p a x D1(p,T)3 xP; (i)

PatT= axpD 2 (p,T)3xT; (2)

and

D1 = Do1pl 1  D2 =Do2P T 2 (3)

~and
where at and 3x are partial derivative operators, a, , ol

S02 are constants and x c[-1,1. We assume slab symmetry, but our

results are valid for other symmetries as well. p and T represent

mass and temperature respectively.

The initial date for density p(x,o) and temperature T(x,o)

are defined with homogeneous boundary conditions of either the

first type (Dirichlet),

T(±l,t) = 0 , p(±l,t) = 0 , (4)
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or the third type (convective),

3xT ± heT = 0 , 3xp ± h p = 0 at x = ±1, (5)

where he and h are constants.

For Dirichlet boundary conditions [Eq. (4)], the elliptic

parts of Eqs. (1) and (2) are degenerate on the boundary, and a

solution may exist only in a weak sense. This singular behavior

of the equations on the boundary prevents either density or temp-

erature from vanishing when

01 : c2 and a1 < a2 . (6)

When this occurs, no zero Dirichlet boundary conditions should

be iinposed on the temperature.

Siamilarly, when

aI > a2 but 81 > 82 -1, (7)

the density must be bounded but cannot be required to vanish.

When a M a and 81 82, density blocks the diffusion of'heat

and the diffusing plasma becomes isothermalized. When 81 = 82

and a1> a 2 F particles cannot escape and the system evolves toward

a cold constant-density state.

To simplify our work initially we have concentrated on the

convective boundary conditions [Eq. (5)].

From previous studies of a single diffusion equation des-

cribing diffusion of either mass or energy, we expect a simple

pattern to emerge out of nearly arbitrary initial data. The
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separable solutions of Eqs. (1) and (2) must satisfy special

initial conditions, but they are of prime importance. Indeed,

0extensive numerical experimentation has shown for almost arbi-

trary initial conditions that the system, after a short tran-

sient time, either evolves toward a time-space separable solution

or actually converges to it.

To summarize briefly our results so far, we have identified

two conceptually different diffusion regimes. In the first re-

gime (a1 > a2 and 82 > 81), every initial state transits into a

universal diffusion mode given by the space-time separable

solution. The decay rate of this asymptotic solution is known

a priori unles a 281 = a182, in which case a global analysis is

needed. In the second regime, diffusion is inhibited and, al-

though the system evolves toward the separable form, it cannot,

mathematically speaking, attain this form. The nonlinear inter-

play between density and the temperature always inhibits the

diffusion of either temperature or density.

3. Exact Integrals of the Emden-Fowler Equation

The celebrated Emden-Fowler equation (henceforth referred

to as E.F.E.) appears in various branches of physics and en-

gineering and as such was and still is a subject of extensive

analysis. A review by Wong (1] summarizes the investigations

concerning the qualitative properties of this equation and its

generalizations. In a different vein Ames and Adams [2] employ
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a group method to transform the E.F.E. stated as a boundary value

problem, into an initial value problem which then becomes an

easy numerical task.

Our interest is different; we focus our attention on an

analytical integration of E.F.E. written as

xy" + zy' + axmyn = 0, a = const., (la)

or in one of its slightly generalized forms

xy" + (1+8) y' + axmyn = 0 (ib)

or (xV+ay1) ' + axVyn = 0 (ic)

where m = 1-a, 8 = v-m.

Related to our interest are several approaches for finding

first integrals of dynamical systems that have been recently

presented. They use the E.F.E., (Eq.(la)) or one of its

variants (Eqs. (lb) or (lc)) as a test case to demonstrate the

applicability of the advocated method. These procedures,

generally speaking, are either variational, group-variational

(i.e., exploit a la Noether the invariance of the Lagrangian)

or, ULe an invariance property of partial differential equations

that the searched-after first integral satisfies. These methods

will be reviewed and compared with our approach. In our work,

however, we approach this problem directly and derive two suf-

ficient conditions, of which at least one appears to be the

hitherto unknown. When either of these conditions is satisfied,

one is ensured not only of the existence of first integral of
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motion but a total integration of E.F.E. The point that every

first integral of E.F.E. may be brought to an autonomous form

and thus further integrated is trivial but was surprisingly

* - enough unnoticed in previous works. It is noteworthy that each

integrable case generates a one parameter family of integrable

Emden-Fowler equations.

4. New Results in the Theory of Turbulent Self-Diffusion

The work described in this and the following section is

being carried out by E. Hameiri.

We consider the diffusion of a fluid element as a result of

* t*. stationary and homogeneous turbulence. Thus, we know the same-

time statistics of the turbulent velocity field u <uk(0)-u 1(0)>

ak 6 k' and would like to determine the expected deviation

X(t) of a fluid particle from its original position.

Y(t) E d-l<jx(t) x(0)12>, where k indicates a Fourier mode and

d is the dimensionality of the space.

There have been many attempts to solve this problem. For

example, Taylor and McNamara, (Phys. Fluids, 1973), after a

number of approximations obtained the result

d22
d-- 2 2e Y(O) = Y(O) = 0

dt k k

which determines Y(t). The result was below, but rather close

to, numerical calculations. This work however had some short-

comings. First, it dealt only with the two-dimensional case d=2.

Secondly, it required some precise knowledge of the flow, namely
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that the vorticity was advected by the fluid, and the approxi-

mation making use of this information appeared only one of

many others that could have been made.

our approach circumvents the need for knowledge of the

flow by using a Lagrangian variational principle which determines

it. Using then a well known (but not necessarily valid) ap-

proximation for a turbulent medium (based on non-dynamic con-

siderations) as an additional constraint, we get the result

d 2  > 2 (a 2 ) (e-k2ya 2 ) /2

dt 2  - k k

Inequality holds because of the dropping of a constraint (the

knowledge of the end points of-.all particle trajec'tories in
5/.

time). This result is obtained for arbitrary d, and is in strik-

ing contrast to Taylor's relation. A Schwartz inequality argu-

ment shows our Y(t) to be larger than Taylor's. Our result can

be improved to give a somewhat closer bound by using additional

information on the flow as further constraints on the variation,

e.g., conservation of enstrophy.

This novel approach to the diffusion problem can be similarly

used by employing other variational principles which determine

the same flow. In particular, one can get a lower bound on the

diffusion by using a principle "dual" to the first one. We did

not succeed yet in obtaining a lower bound apparently close to

Taylor's and further analytical and numerical work is needed.

,a..

a' * % " " '.e 'eme •. . '" .. -
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5. Mathematical Theory of the Essential Spectrum in Magneto-
hydrodynamics

The linearized MHD equations present a rare example of

differential operator which has a non pure point spectrum,

even though it may be defined on a finite domain and with

coefficients as smooth as we wish. This stands in marked con-

trast to the much discussed Schr8dinger operator. From a

practical point of view, the MHD spectrum determines the time

evolution of small perturbations of a plasma about an equili-

brium state. The singularities in the spectrum appear in the

configurations common in magnetic confinement experiments, but

the underlying causes affect the behavior of all magnetized

plasmas, e.g., solar wind plasma.

The present work represents a rigorous rtathematical in-

vestigation of the subject. Some results were nevertheless

known previously, usually derived by heuristic arguments. In

particular, Grad, Pao and others derived equations which de-

termined the so-called "Alfven" system, while the existence of

"ballooning modes" was discovered in the past few years. These

latter modes, which were derived as a stability criterion, are

shown by us to be another part of the essential spectrum. (This

spectrum is defined as the whole spectrum except for all discrete

eigenvalues of finite multiplicity.)

The derivation of the essential spectrum is done by us by

finding an "approximate eigenfunction", i.e., by constructing

a sequence of functions, not converging to zero in the norm, such

S p - • , . • . . . , . . . . .. •.,.., . . -..
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that the eigenvalue equation is satisfied in the limit. It

always happens that the limiting function needs to be localized

in space near a single field line, and a reduced one-dimensional

eigenvalue equation along the field line determines points in

the essential spectrum of the original problem. There are many

possible directions of strong localization, one of which yields

the "Alfven" spectrum and others the "ballooning spectrum." In

the case of axisymmetry, the spectrum is the union of the spectra

corresponding to Fourier modes in the ignorable direction, and

we proved that each such part consists of exactly an Alfven

spectrum plus discrete modes. Thus ballooning modes must be

the accumulation points of discrete eigenvalues, the accumula-

tion occuring over non empty intervals. Our proof here utilized

the properties of compact operators in the theory of perturbations

of the spectrum of operators.

Finally, we gave a physical interpretation to the essential

spectrum. The need for localized eigenfunctions indicates the

existence of one-dimensional wave propagation along magnetic

field lines. Indeed, one such wave is known as the Alfven wave,

and in the linearized system another such wave exists. Looked

at from this point of view, solutions of the localized equations

we obtained are needed in order to determine plasma behavior

in all configurations with a magnetic field, e.g., whistler

plasmas.

'
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